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Abstract. The statistical mechanics of polymer loops entangled in the two-dimensional array
of randomly distributed obstacles of infinite length is discussed. The area of the loop projected
onto the plane perpendicular to the obstacles is used as a collective variable in order to re-express
a (mean-field) effective theory for the polymer conformation. It is shown explicitly that the loop
undergoes a collapse transition to a randomly branched polymer withR ∝ lN1/4.

1. Introduction

The statistical mechanics of entangled polymers, i.e. polymer chains under topological
constraints is a generally unsolved problem. The main difficulty is to specify distinct
topological states of the polymer chain. Closed polymers, or polymer loops appear to be
a much simpler system as they are either linked (with themselves or with one another) or
unlinked. Linear chains, however, can always be disentangled. On a shorter time scale
than the disentanglement time though, it seems justified to define topological states ‘on the
average’, using the same formalism as for polymer loops.

Mathematically, the problem of specifying topological states of polymer loops is
equivalent to the classification problem for knots and links [1]. Since the mid-eighties
considerable progress has been made following Jones [2] as various new knot polynomials
have been discovered (for a review on knots see [1]).

For an analytical theory of the polymer entanglement problem, the algebraic form of
these invariants is not suitable (see section 5 for new perspectives). They are generally
expressed in one, two or three variables which appear in the defining relations (known
as skein relations). There is no immediate relation of these variables to the polymer
conformation and consequently there is no reasonable way to couple the knot invariant
to a statistical weight for a given polymer conformation. Algebraic knot theory seems to
be applicable for the theory of entangled directed polymers [3], and certainly does so in
computer simulations (e.g. [4–7]).

The degrees of freedom appearing in the statistical weight of a given polymer
conformation are usually expressed in terms of segment positionsr(s) which is a mapping
[0, N ] → Rd from the contour variables to d-dimensional space [8]. Ford = 3, one
invariant showing an explicit dependance on these variables is the the so called Gauss
invariant for two given closed loopsCα andCβ parametrized byrα(s), rβ(s)

8(Cα, Cβ) = 1

4π

∮
Cα

ds

∮
Cβ

ds ′ ṙα(s) ∧ ṙβ(s ′) · rα(s) − rβ(s ′)
|rα(s) − rβ(s ′)|3 (1)

which is invariant with respect to continuous deformations of the loops, was first used by
Edwards to discuss entangled polymer loops [9, 10]. It is also called the Gaussian linking
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number (sometimes also the winding number). As Edwards already noted, ind = 3 the
Gauss invariant does not uniquely specify a given link. There is, in fact, an infinite series
of higher order link invariants that appear quite naturally in a perturbative expansion of
a field-theoretical representation of the generalized Jones polynomial [11, 12]. For special
cases such as a random walk winding around an obstacle of infinite length, rigorous results
can be obtained using the Gauss invariant, as it has been discussed in detail by Wiegel [13].

As even the Gauss invariant is difficult to handle mathematically for a rigorous treatment
of the three-dimensional entanglement problem, many mean-field-type arguments have been
used [8] for a rough characterization of the topological states. Tube models for entangled
polymer melts are the most prominent approaches, which seem to lead to contradictory
conclusions for open linear polymer chains and closed ring polymers. Therefore more
detailed knowledge about the topological states of polymer systems is needed. In general,
this seems to be a difficult task, and to overcome mathematical and conceptual difficulties
simple and model-type situations must be studied, to learn about more complex ones. Only
recently more detailed situations are under consideration by using the path integral approach
and the Gaussian linking number constraint [14].

To give an example that shows the complexity of the structure of the theory we mention
the following development: the ‘easiest’ topological arrangement of closed polymer rings
is the non-concatenated melt of rings, since all winding numbers between different rings are
zero. Scaling arguments for the typical size of a ring,R ∝ Nν , have been put forward [15],
giving an estimate ofν = 2

5. This result seems to be in rough agreement with computer
simulation [16] (see also [17, 18]). The more detailled analytical many chain theory in [14]
supported the scaling result, although the theory is more involved than simple scaling.

An important step forward to formulate the problem by field-theoretic methods was
made by Brereton and Shah [19]. A test loop in the melt was considered that is entangled
with many other chains. The resulting theory can be mapped to Euclidean electrodynamics
in 3 = 2+1 dimensions coupled to a O(n)φ4 theory for the conformation of a self-avoiding
walk (in the limit n → 0 [20, 21]). It is the basis for work by Nechaev and Rostiashvili
[22] in two dimensions.

As a matter of fact, ford = 2 the Gauss invariant becomes rigorous for ‘simple’, i.e.
non-self-intersecting loops. It reads

Gi(C) = 1

2π

∮
C

ds ṙ(s) · ∇(ln |r(s) − ri |) ∧ η. (2)

Here the vectorr(s) represents the segment positions of the polymer loop in the plane. In
equation (1), the role of the polymers entangled with the loop is taken formally by obstacles
at the positionsri . η is a unit vector perpendicular to plane [22].Gi(C) is also called the
winding number of the loop. Equation (2) may also be expressed in terms of a Cauchy
integral in the complex plane and is related to the oriented area of the loop in the plane
[23]. For so-called ‘complex’ loops, i.e. loops with points of self-intersection, special care
is needed as the invariant equation (2) might give zero although the loops are entangled
(see Rostiashviliet al [24]).

The theoretical basis of this paper is the field theory by Breretonet al [19]. It was studied
by Nechaev and Rostiashvili [22, 24] in order to discuss the behaviour of a polymer loop in
an array of randomly distributed parallel line obstacles [22, 24] whose spatial distribution
is quenched. A first-order transition for critical lengthNc for the polymer loop was found
when the quenched average over the winding number distribution was taken. It has been
interpreted as a collapse transition (forN > Nc) to an octopus conformation resembling a
randomly branched polymer with no self-interaction with an end-to-end vector scaling of
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the sizeR ∝ N1/4, whereN is the total length of the ring [25–27].
In fact, in the work below it will be shown explicitly (within the approximation made in

[22]) that the conjectured scaling behaviour is valid even for annealed disorder with respect
to the spatial distribution of obstacles. This assumption is reasonable if the obstacles are
supposed to represent other polymers entangled with a given loop, and was also made in the
original theory by Breretonet al [19]. We will obtain the same free energy (in the mean-
field approximation) as Nechaevet al [22]—yet in a physically more transparent form—and
consequently, the same transition behaviour.

We will exploit the fact that the interaction due to the topological constraint is a so-
called ‘area law’, i.e. it is proportional to the area enclosed by the loop. This is an exact
result known in quantum field theory in the context of Wilson loops and the confinement
problem for abelian gauge fields (see e.g. [28]). Therefore, the area of the loop is equal to
first order to the effective potential found in [22] and is dependent on the conformational
fields and topological quantities.

The paper is organized as follows. In section 2 we clarify that the effective interaction
is proportional to the area being the order parameter of the problem. In section 3, we show
on the level of polymer field theory how the area appears in the effective interaction and
how it depends on the conformational fields (in the mean-field approximation). The critical
behaviour of the order parameter as a function of topological parameters is discussed. A new
upper bound for the range of stability for the mean-field solution (in the replica-symmetric
case) is found. In section 4, the conjectured scaling like for randomly branched polymers is
shown, and in section 5 a brief outlook on the complete, i.e.d = 3 entanglement problem
is given.

2. The area as the order parameter

In the work of Nechaev and Rostiashvili [22] it is not evident at first sight that the first-
order phase transition caused by topological disorder corresponds to a classical collapse
transition, similarly to the case of a polymer immersed in a poor solvent [21]. We expect
indeed structural differences between a collapsed chain in poor solvent and a ‘collapsed
ring’ under topological constraints.

In order to understand better the nature of the phase transition, it is desirable to introduce
an order parameter that fits to the problem, which is in our case the area of the 2D projection
of a simpleloop. Following Cardy [29] we use the covariant expression

A =
∫

d2x

∫
d2x′ 〈Aµ(x)Aν(x

′)〉Jµ(x)Jν(x
′) (3)

wherex = (x, y) is a vector in two-dimensional Euclidean space. VariablesJµ are the
polymer current densities or tangent vector densitiesJµ(x) = ∫ N

0 ds ṙµ(s)δ(x − r(s))

where N is the chemical length of the chain. The gauge fieldsAµ are of theU(1)

type and their correlator is gauge dependent. Using the gaugeA1 = 0 it reads as
〈Aµ(x)Aν(x

′)〉 = − 1
2δµ0δν0|y − y ′|δ(x − x ′), and it becomes obvious that the right-hand

side of (3) is indeed an area.
When using expression (3) for the definition of the area some care is needed. The above

equation is valid only for non-self-intersecting loops which will be the scope of the present
treatment. In the case of self-intersections, negative area contributions may cancel positive
ones giving a total zero area (see above the discussion following (2)).

We next recall the incorporation of constraint (2) in the partition sum for the loop [22].
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For a fixed number of obstaclesc enclosed by the loop the partition function is given by

Z(c) =
∫

Dr(s)δ(r(N) − r(0))δ

(
c −

∮
C

ds ṙ(s) · A

)
× exp

(
− 1

l2

∮
ds ṙ2(s) − a2

2

∮
ds

∮
ds ′ δ(r(s) − r(s ′))

)
(4)

wherel is the Kuhn segment length, anda2 is the 2D excluded volume. From equation (2)
we see that the gauge fieldA is given by

∑N
i=1 ∇(ln |r(s) − ri |) ∧ η so that the delta

function fixes the winding number in terms of the 2D Gauss invariant. It satisfies∇ ·A = 0
and ∇ ∧ A = η(ϕ(r) − ϕ0) whereϕ(r) = ∑

i δ(r − ri ) and ϕ0 is the mean density of
obstacles in thexy-plane.

In contrast to [22] we suppose that first, the spatial distribution of obstacles is annealed
whereas second, the distribution of winding numbersc, i.e. obstacles enclosed by the loop is
quenched. The first assumption is reasonable if the obstacles are to represent other polymers
(of infinite length) entangled with the loop, which is an important feature of a model that
projects the original three-dimensional entanglement problem to two dimensions.

The second assumption is clear from the fact that once a given winding numberc is fixed
for the loop, it should remain fixed in the process of averaging over both the conformations
of the loop and the positions of obstacles. As a consequence, we take theannealedaverage
over the spatial distribution of obstacles to be the Gaussian

P(ϕ(r)) ∼ exp

(
− 1

2ϕ0

∫
d2x (ϕ(r) − ϕ0)

2

)
∼ exp

(
− 1

2ϕ0

∫
d2x (∇ ∧ A)2

)
. (5)

The quencheddistribution of the number of obstaclesc is assumed to be a Gaussian with
meanc0 and dispersion1c,

P(c) ∼ exp

(
− (c − c0)

2

21c

)
(6)

and is used to average the free energy.
The winding number constraint in the partition sum is expressed by a Fourier transform

introducing the variableg, a chemical potential conjugate toc:

δ

(
c −

∮
C

ds ṙ(s) · A

)
=

∫
dg

2π
eigc−ig

∮
C

ds ṙ(s)·A. (7)

The distribution of winding numbersP(c) may then be transformed into a distributionP(g)

for the chemical potential [22]. For later purposes it is crucial to note that theg2 averaged
over P(g) is

[g2]g = 1

1c

(
1 − c2

0

1c

)
. (8)

The partition function is now expressed in terms ofg. After averaging over the the spatial
distribution of obstacles, it reads

〈Z(g)〉A = N
∫

DAδ(∇ · A)

∫
Dr(s)δ(r(N) − r(0))

× exp

(
− 1

2ϕ0

∫
d2x (∇ ∧ A)2 − ig

∮
C

ds ṙ(s) · A

− 1

l2

∮
ds ṙ2(s) − a2

2

∮
ds

∮
ds ′ δ(r(s) − r(s ′))

)
(9)
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whereN is a normalization factor for the average over the gauge fields.
Carrying out the integral over the gauge fieldsA, one obtains

〈Z(g)〉A =
∫

Dr(s)δ(r(N) − r(0))

× exp

(
− ϕ0g

2

2

∫
d2x

∫
d2x′ 〈Aµ(x)Aν(x

′)〉Jµ(x)Jν(x
′)

− 1

l2

∮
ds ṙ2(s) − a2

2

∮
ds

∮
ds ′ δ(r(s) − r(s ′))

)
. (10)

The resulting term in the exponential is proportional to the area of the loop. In fact, the
interaction reads as

βHint = ϕ0g
2

2
A. (11)

If we replaceg2 by its mean value (8) we obtain

βHint = ϕ0

21c

(
1 − c2

0

1c

)
A. (12)

The approximation considered in [22] is limited to range of values forϕ0 and 1c which
require the factor in front ofA to be always positive (as to further restrictions on the set of
values for these parameters where a mean-field solution is valid, see the end of section 3).
Consequently, in order to minimize its energy the loop tends to collapse, decreasing its area.

3. The area as a collective variable and polymer field theory

We now introduce the area explicitly as collective variable in the partition sum using
1 = ∫

dA δ(A − Â) where Â is given by (3). After transforming the delta function and
some standard manipulations we then have

〈Z(g)〉A = N
∫

dA

∫
dα

∫
Dr(s)δ(r(N) − r(0))

× exp

(
iαA −

(
iα + ϕ0g

2

2

) ∫
d2x

∫
d2x′ 〈Aµ(x)Aν(x

′)〉Jµ(x)Jν(x
′)

− 1

l2

∮
ds ṙ2(s) − a2

2

∮
ds

∮
ds ′ δ(r(s) − r(s ′))

)
. (13)

Let us define ĩα = iα + ϕ0g
2/2 for a moment, and expressα in terms of α̃, and make

the changeα → α̃ in the integration variable. This procedure looks strange at first glance,
because the new integration variableα̃ now becomes complex. Below we show that this is
not a serious problem for the purpose of this paper. After these manipulations we obtain

〈Z(g)〉A = N
∫

dA

∫
dα̃

∫
Dr(s)δ(r(N) − r(0))

× exp

(
−ϕ0g

2

2
A + iα̃A − iα̃

∫
d2x

∫
d2x′ 〈Aµ(x)Aν(x

′)〉Jµ(x)Jν(x
′)

− 1

l2

∮
ds ṙ2(s) − a2

2

∮
ds

∮
ds ′ δ(r(s) − r(s ′))

)
. (14)
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In the next step, the term depending on the gauge field correlator is expressed in terms of
a Gaussian integration:

〈Z(g)〉A = N
∫

DAδ(∇ · A)

∫
dA

∫
dα̃

∫
Dr(s)δ(r(N) − r(0))

× exp

(
−1

2

∫
d2x (∇ ∧ A)2 − ie

∫
d2x Aµ(x)Jµ(x) − ϕ0g

2

2
A + iα̃A

− 1

l2

∮
ds ṙ2(s) − a2

2

∮
ds

∮
ds ′ δ(r(s) − r(s ′))

)
(15)

wheree is a shorthand notation for
√

2iα̃ and is the ‘coupling constant’ of the analoguous
Wilson loop problem, well known in quantum field theory [28]. We note again thate is
complex, but it will turn out below that this is not a problem. The partition sum has now
a structure similar to the original formulation considered in [22] and is suitable for a field-
theoretic treatment. Note that the interaction1

2ϕ0g
2A has been completely separated from

the conformational average and the average over the distribution of obstacles. The area is
related to the conformation directly only via the coupling constante or α̃, respectively. In
fact, the problem will be first examined for a given realization of these variables. In the
last step, the parameterα̃ will be eliminated to give back the dependance of the area on the
conformation of the loop.

To proceed further, we consider only consider the functional intregation over the
positionsr(s), i.e. the partition function

Z(e; [A]) = N
∫

Dr(s)δ(r(N) − r(0)) exp

(
− 1

l2

∮
ds ṙ2(s)

−a2

2

∮
ds

∮
ds ′ δ(r(s) − r(s ′)) − ie

∫
d2xAµ(x)Jµ(x)

)
.

The partition function (16) describes the statistics of the loop for given external ‘magnetic’
field A. It is formally the same partition function asZ(g) in (9), and can be treated
in terms of then vector φ4 theory in the limit n → 0 [20] according to [19, 22]. To
obtain the field theory, the following standard steps have to be carried out. First, the two-
dimensional excluded volume interaction is expressed in terms of a Gaussian average over
a pseudopotential [8]. Then, one has to consider the Green’s function of the loop for a
given realization of the gauge fieldA and the pseudopotential for the excluded volume.
The Green’s function is expressed in terms of a Gaussian field theory. The averages over
the pseudopotential and the gauge field lead to consider ann-fold replicated field theory
(see [22] for technical details). When the average over the pseudopotential is carried out,
one finally obtains

Zn(e; [A]) =
n∏

i=1

( ∫
Dφi

∫
Dφ∗

i

)
exp

(
−

∫
d3R H[A, φi, φ

∗
i ]

)
(16)

with

H[A, φi, φ
∗
i ] =

n∑
i=1

φi

(
m2 − l2

4
(∇⊥ − ieA)2 − l2

2
∇2

‖

)
φ∗

i + La2

4

n∑
i,j=1

φiφ
∗
i φjφ

∗
j . (17)

The fieldsφi are replica fields for polymer loops. The model has been embedded into
three-dimensional space, so the excluded volume term is the embedded two-dimensional
one withL being the mean size of the polymer in thez direction.
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Now, the average over the obstacle distribution is taken as follows:

〈Zn(e; [A])〉A = N
∫

DAδ(∇ · A)Zn(e; [A]) exp

(
− 1

2

∫
d2x (∇ ∧ A)2

)
. (18)

The gauge fields are integrated out following [22]. To simplify the algebra, the Landau
gauge is used. One obtains an effective action with the one-loop correction being given by

H1-loop =
∫

d2k

(2π)2
log

(
k2 + Q

∑
i

φiφ
∗
i

)
(19)

with Q = 1
2l2e2 = iα̃l2. As Q is complex, a complex logarithm in (19) has to be considered.

It is easily shown that by restricting the analysis to one Riemannian sheet, the integral can
be evaluated straightforwardly under the assumption that theφi are constant in space. This
assumption is consistent with the result that the topologically restricted chain forms a dense
object with very small density fluctuations. This corresponds indeed to the assumption of
φi ≈ constant.

In [22] the replica-symmetric case is studied because only in this case the effective
potential approximation can be used. (For the details of solving integral (19) and the
renormalization procedure we refer the reader to [22]).

In this case, we now approximate
∑

i φiφ
∗
i = nφφ∗. After renormalization according

to [22] one obtains

〈Zn(e = e(α̃); [A])〉A = exp

(
−

∫
d3R Leff

)
(20)

with an effective Lagrangian

Leff = inα̃

(
− l2

4π
|φ|2 ln(

|φ|2
M2

) + l2

2π
|φ|2

)
+ n(m2 − La2M2)|φ|2 + n

La2

4
|φ|4 (21)

whereM is an arbitrary subtraction point appearing due to the renormalization procedure.
Because the fieldsφ are now constant in space, the integration in (21) gives simply a
constant volume factorV . From equation (20) one obtains the contribution to the free
energy as a function of̃α which is conjugate to the area. Devided by the system volume,
it is given using the standard formula:

f (α̃) = F(α̃)

V
= 1

V

∂

∂n
〈Zn(e = e(α̃); [A])〉A|n=0

= iα̃

(
− l2

4π
|φ|2 ln

( |φ|2
M2

)
+ l2

2π
|φ|2

)
+ (m2 − La2M2)|φ|2 + La2

4
|φ|4.

(22)

The next step is to transform back from̃α to the areaA. This is done by a Legendre
transfrom (or by a Fourier transform of the partition function). Finally one has to add the
area term1

2ϕ0g
2A to the free energy which yields the partition function averaged over the

distribution of obstacles:

〈Z(g)〉A =
∫

dA δ

(
A + l2

4π
V |φ|2 ln

( |φ|2
M2

)
− l2

2π
V |φ|2

)
e−Vf (A,g) (23)

with the free energy density

f (A, g) = ϕ0g
2

2V
A + (m2 − La2M2)|φ|2 + La2

4
|φ|4. (24)

The set of equations (23) and (24) is the fundamental result of this paper. The free energy
densityf (A, g) is indeed the area law plus the renormalized action for the self-avoiding
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walk loop. Integrating over the area gives back the result of [22] for the free energy density
in terms of conformational fields andg only. Averaging the free energy density in (24) over
the distribution of winding numbers using (8) one finally obtains

f (A) = [f (A, g)]g = ϕ0

2V 1c

(
1 − c2

0

1c

)
A + (m2 − La2M2)|φ|2 + La2

4
|φ|4. (25)

As a consequence of (25), the essential result we have obtained here is the dependance of
the area on the fieldsφ in the mean-field approximation expressed in the delta function of
(23).

A = − l2

4π
V |φ|2 ln

( |φ|2
M2

)
+ l2

2π
V |φ|2. (26)

Introducing the segment densityρ = |φ|2 and choosingM2 = L−3 we then obtain

A = V
l2

2π
(ρ − 1

2ρ ln(ρL3)). (27)

Let us now investigate the behaviour of the area when the collapse transition occurs. It has
been studied in detail in [22], so we just mention the results. In fact, the collapse transition
takes place at the critical lengthNc which is given by (see [22], but with the factor 1/32π
replaced by 1/8π ):

1

Nc
= l2

8π

ϕ0

1c

(
1 − c2

0

1c

)
ln

[(
L

a

)2
l2

4π

ϕ0

1c

(
1 − c2

0

1c

)]
. (28)

As 1/Nc is always positive, the condition(
L

a

)2
l2

4π

ϕ0

1c

(
1 − c2

0

1c

)
> 1 (29)

follows for the stability of the mean-field solution. AtN = Nc the segment density is

ρc = 1

La2

l2

4π

ϕ0

1c

(
1 − c2

0

1c

)
. (30)

Thus the critical area is

Ac = V

2La2

(
l2

2π

)2
ϕ0

1c

(
1 − c2

0

1c

) (
1 − 1

2
ln

[(
L

a

)2
l2

4π

ϕ0

1c

(
1 − c2

0

1c

)])
. (31)

Ac essentially depends on the topological parametersc0, the mean winding number,1c, the
dispersion of the winding number distribution, andϕ0 the mean density of obstacles in the
plane. AsAc should remain non-negative we obtain a new upper bound in addition to the
inequality (29):

e2 >
(

L

a

)2
l2

4π

ϕ0

1c

(
1 − c2

0

1c

)
> 1 (32)

where e= 2.714. . . is Euler’s constant (e is not to be confused with the coupling constant
e defined earlier). Equation (32) indicates that at a certain value of the mean density
of obstaclesϕ0 the mean-field solution will break down. However, the specific value
obtained for the upper bound is a result of the mean-field expression for the critical areaAc,
equation (31), and should not be taken as a quantitative, but a qualitative result. Nechaevet
al have stressed that the mean-field approximation is valid in the vicinity of the boundary
curve defined by the lower bound inequality (29) [22] (see figure 1). The present approach
using the area of the loop as the order parameter and giving the new upper bound gives
strong support of this result that the mean-field solution is restricted to a small neigbourhood
above the boundary curve.
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Figure 1. The phase diagram of the collapse transition. The
shaded area bounded by the full curve corresponds to the
collapsed state of the loop as obtained in [22]. The new
upper bound in (32) gives rise to the new boundary curve
(broken).

4. Final result and discussion

It has been argued in [22] that the collapsed phase can be identified with a randomly
branched polymer. Here we give explicit support of this idea. Consider (27) and substitute
ρ = N/V in the mean-field approximation whereN > Nc, i.e. above the critical length.
We obtain

A = l2

2π
N

(
1 − 1

2 ln(N) + · · ·). (33)

Taking the terms in parentheses as the first powers of an exponential, one finds:

A = l2

2π
N(N−1/2) = l2

2π
N1/2. (34)

Exploiting the result of Cardy [29] for SAWs ind = 2 that 〈A〉 ∼ 〈R2〉, one obtains for
R = (〈R2〉)1/2:

R ∼ lN1/4. (35)

This is the scaling behaviour for randomly branched polymers without excluded volume
interaction. It is therefore very likely that the collapsed phase of the loop corresponds to a
randomly branched polymer.

Note that the result of (34) corresponds to the free part of the free energyF in (24), i.e.
without excluded volume. This is valid as a first approximation because the areaA is not
directly coupled to the densityρ = |φ|2 at the level of the free energy, and the excluded
volume is not renormalized by the topological interactions in the mean-field approximation.
Moreover, a Landau expansion in terms of segment densityρ and tangent vector density
variablesjµ indicates that theρ andjµ decouple at first order becausekµjµ(k) = 0, while
interactions occur only at higher order [14].

As a consequence, the two-dimensional excluded volume must still be taken into
account. That yields the well knownd = 2 branched polymer scaling [26, 27] for the
area or the mean sqare end-to-end vector respectively, i.e.R2 ∼ lN5/4.

5. Outlook to the three-dimensional problem

Finally, let us point out some possible future perspectives for thed = 3 entanglement
problem by coming to the mathematical difficulty of finding a correct knot invariant. While
the known knot invariants in their algebraic form seem to be only of limited use in the
polymer context, the work of Witten [11] showing an equivalence of the Jones polynomial
(actually a more general one) and (in general non-abelian) Chern–Simons field theory has
brought the knot problem closer to physics again. Witten showed that the expectation
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value of Wilson lines averaged over a Chern–Simons action functional integral gives a
knot invariant for framed links. This invariant can also be reproduced perturbatively giving
the sqare of the Gauss invariant as a first approximation and higher order knot invariants
[30, 31, 12].

In addition it has been shown recently that the invariants appearing in Chern–Simons
perturbation theory are intimately related to so-called Vassiliev invariants (see e.g. [32] and
the literature quoted therein).

These results may open new ways of solving the polymer entanglement problem by
a ‘topological perturbation theory’. It might give a range of validity for using the Gauss
invariant for ensemble of random walk chains or rings.
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